Skip to main content
Log in

Aeroelastic instability of paper sheet in an offset printing press

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A simplified and efficient computational model of a thin flexible plate coupled to one-sided axial narrow-channel airflow is presented, modeling flow-induced vibration of a paper sheet transported by short pulses of compressed air encountered in the infeed system of offset printing press machines. The mathematical model is based on a discrete chain of masses, torsional springs, dampers and massless rigid rods. The linearized equations of motion coupled to inviscid flow equations are derived and solved analytically in frequency domain. The structural model is validated on the case of bending of a clamped-free beam under gravity and the elastic and damping constants are identified from measurements. Aeroelastic instability is investigated for three fluid-to-solid mass ratios ranging between 0.24 and 1.4, corresponding to three types of paper used in real offset printing machines. The growth rates and frequencies of the coupled system for supercritical flow velocities are reported and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Balint, T.S., Lucey, A.D.: Instability of a cantilevered flexible plate in viscous channel flow. J. Fluids Struct. 20(7), 893–912 (2005). https://doi.org/10.1016/j.jfluidstructs.2005.05.005

    Article  Google Scholar 

  2. Banichuk, N., Jeronen, J., Neittaanmäki, P., Tuovinen, T.: Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid. J. Fluids Struct. 26(2), 274–291 (2010). https://doi.org/10.1016/j.jfluidstructs.2009.09.006

    Article  MATH  Google Scholar 

  3. Battocchio, F., Sutcliffe, M.P.F., Teschner, F.: Dynamic simulation of long polymeric fibres immersed in a turbulent air flow. In: Proceedings of the 2nd Joint International Conference on Multibody System Dynamics (2012)

  4. Challamel, N., Kocsis, A., Wang, C.M., Lerbet, J.: From Ziegler to Beck’s column: a nonlocal approach. Arch. Appl. Mech. 86(6), 1095–1118 (2016). https://doi.org/10.1007/s00419-015-1081-9

  5. Cisonni, J., Lucey, A.D., Elliott, N.S., Heil, M.: The stability of a flexible cantilever in viscous channel flow. J. Sound Vib. 396, 186–202 (2017). https://doi.org/10.1016/j.jsv.2017.02.045

    Article  Google Scholar 

  6. Doaré, O., Sauzade, M., Eloy, C.: Flutter of an elastic plate in a channel flow: confinement and finite-size effects. J. Fluids Struct. 27(1), 76–88 (2011). https://doi.org/10.1016/j.jfluidstructs.2010.09.002

    Article  Google Scholar 

  7. Eloy, C., Souilliez, C., Schouveiler, L.: Flutter of a rectangular plate. J. Fluids Struct. 23(6), 904–919 (2007). https://doi.org/10.1016/j.jfluidstructs.2007.02.002

    Article  Google Scholar 

  8. Eloy, C., Lagrange, R., Souilliez, C., Schouveiler, L.: Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611, 97–106 (2008). https://doi.org/10.1017/s002211200800284x

    Article  MathSciNet  MATH  Google Scholar 

  9. Eloy, C., Kofman, N., Schouveiler, L.: The origin of hysteresis in the flag instability. J. Fluid Mech. 691, 583–593 (2011). https://doi.org/10.1017/jfm.2011.494

    Article  MathSciNet  MATH  Google Scholar 

  10. Gibbs, S.C., Wang, I., Dowell, E.: Theory and experiment for flutter of a rectangular plate with a fixed leading edge in three-dimensional axial flow. J. Fluids Struct. 34, 68–83 (2012). https://doi.org/10.1016/j.jfluidstructs.2012.06.009

    Article  Google Scholar 

  11. Guo, C.Q., Paidoussis, M.P.: Stability of rectangular plates with free side-edges in two-dimensional inviscid channel flow. J. Appl. Mech. 67(1), 171 (2000). https://doi.org/10.1115/1.321143

    Article  MATH  Google Scholar 

  12. Hall, A.R.: The pseudo-rigid-body model for fast, accurate, non-linear elasticity. PhD thesis, Brigham Young University, Provo (2003)

  13. Horáček, J., Šidlof, P., Švec, J.G.: Numerical simulation of self-oscillations of human vocal folds with Hertz model of impact forces. J. Fluids Struct. 20(6), 853–869 (2005). https://doi.org/10.1016/j.jfluidstructs.2005.05.003

    Article  Google Scholar 

  14. Howell, R.M., Lucey, A.D., Carpenter, P.W., Pitman, M.W.: Interaction between a cantilevered-free flexible plate and ideal flow. J. Fluids Struct. 25(3), 544–566 (2009). https://doi.org/10.1016/j.jfluidstructs.2008.12.004

    Article  Google Scholar 

  15. Huang, W.X., Sung, H.J.: Three-dimensional simulation of a flapping flag in a uniform flow. J. Fluid Mech. 653, 301–336 (2010). https://doi.org/10.1017/s0022112010000248

    Article  MathSciNet  MATH  Google Scholar 

  16. Kulachenko, A., Gradin, P., Koivurova, H.: Modelling the dynamical behaviour of a paper web. Part I. Comput. Struct. 85(3–4), 131–147 (2007). https://doi.org/10.1016/j.compstruc.2006.09.006

    Article  Google Scholar 

  17. Lazarus, A., Maurini, C., Neukirch, S.: Stability of discretized nonlinear elastic systems. In: CISM International Centre for Mechanical Sciences, pp. 1–53. Springer, Vienna (2015). https://doi.org/10.1007/978-3-7091-1877-1_1

  18. Lemaitre, C., Hémon, P., de Langre, E.: Instability of a long ribbon hanging in axial air flow. J. Fluids Struct. 20(7), 913–925 (2005). https://doi.org/10.1016/j.jfluidstructs.2005.04.009

    Article  Google Scholar 

  19. Lindström, S.B., Uesaka, T.: Simulation of the motion of flexible fibers in viscous fluid flow. Phys. Fluids 19(11), 113307 (2007). https://doi.org/10.1063/1.2778937

    Article  MATH  Google Scholar 

  20. Lucey, A.D., Carpenter, P.W.: A numerical simulation of the interaction of a compliant wall and inviscid flow. J. Fluid Mech. 234(1), 121 (1992). https://doi.org/10.1017/s0022112092000727

    Article  MATH  Google Scholar 

  21. Šidlof, P., Kolář, J., Peukert, P.: Flow-induced vibration of a long flexible sheet in tangential flow. In: Topical Problems of Fluid Mechanics 2018, Institute of Thermomechanics AS CR v.v.i. (2018). https://doi.org/10.14311/tpfm.2018.034

  22. Shelley, M.J., Zhang, J.: Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43(1), 449–465 (2011). https://doi.org/10.1146/annurev-fluid-121108-145456

    Article  MathSciNet  MATH  Google Scholar 

  23. Switzer, L.H., Klingenberg, D.J.: Flocculation in simulations of sheared fiber suspensions. Int. J. Multiphase Flow 30(1), 67–87 (2004). https://doi.org/10.1016/j.ijmultiphaseflow.2003.10.005

    Article  MATH  Google Scholar 

  24. Tan, B.H., Lucey, A.D., Howell, R.M.: Aero-/hydro-elastic stability of flexible panels: prediction and control using localised spring support. J. Sound Vib. 332(26), 7033–7054 (2013). https://doi.org/10.1016/j.jsv.2013.08.012

    Article  Google Scholar 

  25. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Instability. McGraw-Hill, London (1961)

    Google Scholar 

  26. Wang, G., Yu, W., Zhou, C.: Optimization of the rod chain model to simulate the motions of a long flexible fiber in simple shear flows. Eur. J. Mech. B/Fluids 25(3), 337–347 (2006). https://doi.org/10.1016/j.euromechflu.2005.09.004

    Article  MATH  Google Scholar 

  27. Watanabe, Y., Isogai, K., Suzuki, S., Sugihara, M.: A theoretical study of paper flutter. J. Fluids Struct. 16(4), 543–560 (2002). https://doi.org/10.1006/jfls.2001.0436

    Article  Google Scholar 

  28. Watanabe, Y., Suzuki, S., Sugihara, M., Sueoka, Y.: An experimental study of paper flutter. J. Fluids Struct. 16(4), 529–542 (2002). https://doi.org/10.1006/jfls.2001.0435

    Article  Google Scholar 

  29. Wu, X., Kaneko, S.: Linear and nonlinear analyses of sheet flutter induced by leakage flow. J. Fluids Struct. 20(7), 927–948 (2005). https://doi.org/10.1016/j.jfluidstructs.2005.05.008

    Article  Google Scholar 

  30. Zeng, Y.C., Yang, J.P., Yu, C.W.: Mixed Euler–Lagrange approach to modeling fiber motion in high speed air flow. Appl. Math. Model. 29(3), 253–261 (2005). https://doi.org/10.1016/j.apm.2004.09.007

    Article  MATH  Google Scholar 

  31. Zhang, D., Liang, S., Li, P., Yang, Y.: A numerical and experimental study on the divergence instability of an inverted cantilevered plate in wall effect. Arch. Appl. Mech. 90(7), 1509–1528 (2020). https://doi.org/10.1007/s00419-020-01681-8

    Article  Google Scholar 

Download references

Acknowledgements

This publication was supported by the Czech Ministry of Industry and Trade in the framework of the institutional support for long-term conceptual development of research organization—recipient VÚTS, a.s.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Šidlof.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Derivation of the aerodynamic forces

Appendix A: Derivation of the aerodynamic forces

The mean velocity \(U_0(x)\) is assumed zero upstream of the nozzle, and constant downstream:

$$\begin{aligned} U_0(x) = \left\{ \begin{matrix} 0 &{}\quad x < L_1 \\ U_0 &{}\quad x \ge L_1 \end{matrix} \right. \end{aligned}$$
(A.1)

The velocity perturbation derivative can be expressed from the linearized continuity equation (14) as

$$\begin{aligned} \frac{\partial {\tilde{u}}}{\partial x} = - \frac{U_0}{H_0} \frac{\partial w}{\partial x} - \frac{1}{H_0} \frac{\partial w}{\partial t}. \end{aligned}$$
(A.2)

In the interval downstream of the nozzle, \(x \in \left<L_1,L \right>\), integration of (A.2) yields

$$\begin{aligned} \int _{L_1}^x \frac{\partial {\tilde{u}}}{\partial x} \mathrm{d}\xi = {\tilde{u}}(x) - {\tilde{u}}(L_1) = - \frac{U_0}{H_0} \left[ w(x,t) - w(L_1,t) \right] - \frac{1}{H_0} \int _{L_1}^x \frac{\partial w}{\partial t}(\xi ,t) \mathrm{d}\xi . \end{aligned}$$
(A.3)

Using Eq. (10) and boundary condition \({\tilde{u}}(L_1)=0\), the velocity perturbation can be written as

$$\begin{aligned} {\tilde{u}}(x,t) = - \frac{U_0}{H_0} \left[ \sum _{j=1}^{n-1} w_j(t) f_j(x) - w_k(t) \right] - \frac{1}{H_0} \sum _{j=1}^{n-1} {\dot{w}}_j(t) [ g_j(x) - g_j(L_1) ] \quad \forall x \in \left<L_1,L \right>, \end{aligned}$$
(A.4)

where

$$\begin{aligned} g_j(x) = \int _0^x f_j(\xi ) \ \mathrm{d} \xi , \quad h_j(x) = \int _0^x g_j(\xi ) \ \mathrm{d} \xi , \quad s_j(x) = \int _0^x h_j(\xi ) \ \mathrm{d} \xi \end{aligned}$$
(A.5)

are integrals of the Heaviside lambda function which can be precomputed analytically (\(h_j\) and \(s_j\) will be used later). After integration of the linearized Euler equation (13), one gets

$$\begin{aligned} \int _x^L \frac{\partial p}{\partial x} = p(L,t)-p(x,t) = - \rho \int _x^L \frac{\partial {\tilde{u}}}{\partial t}(\xi ,t) \mathrm{d}\xi - \rho U_0 [{\tilde{u}}(L)-{\tilde{u}}(x)] \quad \forall x \in \left<L_1,L \right>. \end{aligned}$$
(A.6)

Combining (A.4) with (A.5) and using boundary condition \(p(L,t)=0\), the perturbation pressure takes the following form:

$$\begin{aligned} p(x,t)= & {} \frac{2 \rho U_0}{H_0} \sum _{j=1}^{n-1} {\dot{w}}_j(t) [g_j(x)-g_j(L)] + \frac{\rho U_0}{H_0} {\dot{w}}_k(t) (L-x) \nonumber \\&+ \frac{\rho }{H_0} \sum _{j=1}^{n-1} \ddot{w}_j(t) \left[ h_j(x)-h_j(L)+g_j(L_1)(L-x) \right] \nonumber \\&+ \frac{\rho U_0^2}{H_0} \sum _{j=1}^{n-1} w_j(t) [f_j(x) - f_j(L)] \quad \forall x \in \left<L_1,L \right>. \end{aligned}$$
(A.7)

A similar procedure can be performed in the interval upstream of the nozzle, where the boundary conditions are \({\tilde{u}}(L_1)=0, p(0,t)=0\). Eventually,

$$\begin{aligned} {\tilde{u}}(x,t)= & {} \frac{1}{H_0} \sum _{j=1}^{n-1} {\dot{w}}_j(t) [ g_j(L_1) - g_j(x) ] \quad \forall x \in \left<0,L_1\right>, \end{aligned}$$
(A.8)
$$\begin{aligned} p(x,t)= & {} - \frac{\rho }{H_0} \sum _{j=1}^{n-1} \ddot{w}_j(t) \left[ g_j(L_1)x - h_j(x) \right] \quad \forall x \in \left<0,L_1\right>. \end{aligned}$$
(A.9)

The discrete aerodynamic forces \(F_i(t)\) at the locations of mass with indices i can be then expressed as

$$\begin{aligned} F_i(t) = b \int _{x_i - \frac{\varDelta }{2}}^{x_i+ \frac{\varDelta }{2}} p(x,t) \ \mathrm{d}x = \rho \sum _{j=1}^{n-1} a_{ij} \ddot{w}_j + \rho U_0 \sum _{j=1}^{n-1} b_{ij} {\dot{w}}_j + \rho U_0^2 \sum _{j=1}^{n-1} c_{ij} w_j. \end{aligned}$$
(A.10)

Coefficients \(a_{ij}\), \(b_{ij}\) and \(c_{ij}\) in (A.10), which are constant and can be precomputed analytically, have the following form:

$$\begin{aligned} a_{ij}= & {} \left\{ \begin{array}{ll} - \frac{b}{H_0} \left[ g_j(L_1) \varDelta x_i - s_j(x_i+\frac{\varDelta }{2})+s_j(x_i-\frac{\varDelta }{2}) \right] &{}\quad i \in \left<0,k-1\right> \\ {\frac{b}{H_0} \left[ -h_j(L) \frac{\varDelta }{2} +g_j(L_1) \frac{\varDelta }{2} (L-\frac{\varDelta }{2}) + s_j(L_1+\frac{\varDelta }{2}) - 2 s_j(L_1) + s_j(L_1-\frac{\varDelta }{2}) \right] } &{}\quad i=k \\ \frac{b}{H_0} \left[ -h_j(L) \varDelta + g_j(L_1) \varDelta (L-x_i) + s_j(x_i+\frac{\varDelta }{2}) - s_j(x_i - \frac{\varDelta }{2}) \right] &{}\quad i \in \left<k+1,n\right> \end{array} \right. \end{aligned}$$
(A.11)
$$\begin{aligned} b_{ij}= & {} \left\{ \begin{array}{ll} 0 &{}\quad i \in \left<0,k-1\right> \\ \frac{2 b}{H_0} \left[ -g_j(L) \frac{\varDelta }{2} +h_j(L_1 + \frac{\varDelta }{2}) - h_j(L_1) \right] + \frac{b}{H_0} \frac{\varDelta }{2} \left( L - L_1 - \frac{\varDelta }{4} \right) \delta _{jk} &{}\quad i=k \\ \frac{2 b}{H_0} \left[ -g_j(L) \varDelta + h_j(x_i + \frac{\varDelta }{2}) - h_j(x_i - \frac{\varDelta }{2}) \right] + \frac{b}{H_0} \varDelta \left( L - x_i \right) \delta _{jk} &{}\quad i \in \left<k+1,n\right> \end{array} \right. \end{aligned}$$
(A.12)
$$\begin{aligned} c_{ij}= & {} \left\{ \begin{array}{ll} 0 &{}\quad i \in \left<0,k-1\right> \\ \frac{b}{H_0} \left[ -f_j(L) \frac{\varDelta }{2} + g_j(L_1) - g_j(L_1 - \frac{\varDelta }{2}) \right] &{}\quad i=k \\ \frac{b}{H_0} \left[ -f_j(L) \varDelta + g_j(x_i + \frac{\varDelta }{2}) - g_j(x_i - \frac{\varDelta }{2}) \right] &{}\quad i \in \left<k+1,n\right> \end{array} \right. \end{aligned}$$
(A.13)

where \(\delta _{jk}\) is the Kronecker delta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šidlof, P., Kolář, J., Peukert, P. et al. Aeroelastic instability of paper sheet in an offset printing press. Arch Appl Mech 92, 121–136 (2022). https://doi.org/10.1007/s00419-021-02044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02044-7

Keywords

Navigation